3.20.57 \(\int \frac {(d+e x)^2}{(a d e+(c d^2+a e^2) x+c d e x^2)^{3/2}} \, dx\) [1957]

Optimal. Leaf size=125 \[ -\frac {2 (d+e x)}{c d \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac {\sqrt {e} \tanh ^{-1}\left (\frac {c d^2+a e^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{c^{3/2} d^{3/2}} \]

[Out]

arctanh(1/2*(2*c*d*e*x+a*e^2+c*d^2)/c^(1/2)/d^(1/2)/e^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))*e^(1/2)/c
^(3/2)/d^(3/2)-2*(e*x+d)/c/d/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.04, antiderivative size = 125, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 37, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.081, Rules used = {666, 635, 212} \begin {gather*} \frac {\sqrt {e} \tanh ^{-1}\left (\frac {a e^2+c d^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{c^{3/2} d^{3/2}}-\frac {2 (d+e x)}{c d \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(d + e*x)^2/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2),x]

[Out]

(-2*(d + e*x))/(c*d*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]) + (Sqrt[e]*ArcTanh[(c*d^2 + a*e^2 + 2*c*d*e*x
)/(2*Sqrt[c]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(c^(3/2)*d^(3/2))

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 635

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 666

Int[((d_.) + (e_.)*(x_))^2*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e*(d + e*x)*((a + b*x +
 c*x^2)^(p + 1)/(c*(p + 1))), x] - Dist[e^2*((p + 2)/(c*(p + 1))), Int[(a + b*x + c*x^2)^(p + 1), x], x] /; Fr
eeQ[{a, b, c, d, e, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && LtQ[p,
-1]

Rubi steps

\begin {align*} \int \frac {(d+e x)^2}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx &=-\frac {2 (d+e x)}{c d \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac {e \int \frac {1}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{c d}\\ &=-\frac {2 (d+e x)}{c d \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac {(2 e) \text {Subst}\left (\int \frac {1}{4 c d e-x^2} \, dx,x,\frac {c d^2+a e^2+2 c d e x}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{c d}\\ &=-\frac {2 (d+e x)}{c d \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac {\sqrt {e} \tanh ^{-1}\left (\frac {c d^2+a e^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{c^{3/2} d^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.13, size = 113, normalized size = 0.90 \begin {gather*} \frac {-2 \sqrt {c} \sqrt {d} (d+e x)+2 \sqrt {e} \sqrt {a e+c d x} \sqrt {d+e x} \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {d} \sqrt {d+e x}}{\sqrt {e} \sqrt {a e+c d x}}\right )}{c^{3/2} d^{3/2} \sqrt {(a e+c d x) (d+e x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)^2/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2),x]

[Out]

(-2*Sqrt[c]*Sqrt[d]*(d + e*x) + 2*Sqrt[e]*Sqrt[a*e + c*d*x]*Sqrt[d + e*x]*ArcTanh[(Sqrt[c]*Sqrt[d]*Sqrt[d + e*
x])/(Sqrt[e]*Sqrt[a*e + c*d*x])])/(c^(3/2)*d^(3/2)*Sqrt[(a*e + c*d*x)*(d + e*x)])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(484\) vs. \(2(107)=214\).
time = 0.70, size = 485, normalized size = 3.88

method result size
default \(e^{2} \left (-\frac {x}{c d e \sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}}-\frac {\left (e^{2} a +c \,d^{2}\right ) \left (-\frac {1}{c d e \sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}}-\frac {\left (e^{2} a +c \,d^{2}\right ) \left (2 c d e x +e^{2} a +c \,d^{2}\right )}{c d e \left (4 a c \,d^{2} e^{2}-\left (e^{2} a +c \,d^{2}\right )^{2}\right ) \sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}}\right )}{2 c d e}+\frac {\ln \left (\frac {\frac {1}{2} e^{2} a +\frac {1}{2} c \,d^{2}+c d e x}{\sqrt {c d e}}+\sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}\right )}{c d e \sqrt {c d e}}\right )+2 d e \left (-\frac {1}{c d e \sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}}-\frac {\left (e^{2} a +c \,d^{2}\right ) \left (2 c d e x +e^{2} a +c \,d^{2}\right )}{c d e \left (4 a c \,d^{2} e^{2}-\left (e^{2} a +c \,d^{2}\right )^{2}\right ) \sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}}\right )+\frac {2 d^{2} \left (2 c d e x +e^{2} a +c \,d^{2}\right )}{\left (4 a c \,d^{2} e^{2}-\left (e^{2} a +c \,d^{2}\right )^{2}\right ) \sqrt {a d e +\left (e^{2} a +c \,d^{2}\right ) x +c d e \,x^{2}}}\) \(485\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^2/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x,method=_RETURNVERBOSE)

[Out]

e^2*(-x/c/d/e/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)-1/2*(a*e^2+c*d^2)/c/d/e*(-1/c/d/e/(a*d*e+(a*e^2+c*d^2)*x
+c*d*e*x^2)^(1/2)-(a*e^2+c*d^2)/c/d/e*(2*c*d*e*x+a*e^2+c*d^2)/(4*a*c*d^2*e^2-(a*e^2+c*d^2)^2)/(a*d*e+(a*e^2+c*
d^2)*x+c*d*e*x^2)^(1/2))+1/c/d/e*ln((1/2*e^2*a+1/2*c*d^2+c*d*e*x)/(c*d*e)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x
^2)^(1/2))/(c*d*e)^(1/2))+2*d*e*(-1/c/d/e/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)-(a*e^2+c*d^2)/c/d/e*(2*c*d*e
*x+a*e^2+c*d^2)/(4*a*c*d^2*e^2-(a*e^2+c*d^2)^2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))+2*d^2*(2*c*d*e*x+a*e^
2+c*d^2)/(4*a*c*d^2*e^2-(a*e^2+c*d^2)^2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^2/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(c*d^2-%e^2*a>0)', see `assume?
` for more d

________________________________________________________________________________________

Fricas [A]
time = 2.96, size = 352, normalized size = 2.82 \begin {gather*} \left [\frac {{\left (c d x + a e\right )} \sqrt {\frac {1}{c d}} e^{\frac {1}{2}} \log \left (8 \, c^{2} d^{3} x e + c^{2} d^{4} + 8 \, a c d x e^{3} + a^{2} e^{4} + 4 \, {\left (2 \, c^{2} d^{2} x e + c^{2} d^{3} + a c d e^{2}\right )} \sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e} \sqrt {\frac {1}{c d}} e^{\frac {1}{2}} + 2 \, {\left (4 \, c^{2} d^{2} x^{2} + 3 \, a c d^{2}\right )} e^{2}\right ) - 4 \, \sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e}}{2 \, {\left (c^{2} d^{2} x + a c d e\right )}}, -\frac {{\left (c d x + a e\right )} \sqrt {-\frac {e}{c d}} \arctan \left (\frac {\sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e} {\left (2 \, c d x e + c d^{2} + a e^{2}\right )} \sqrt {-\frac {e}{c d}}}{2 \, {\left (c d^{2} x e + a x e^{3} + {\left (c d x^{2} + a d\right )} e^{2}\right )}}\right ) + 2 \, \sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e}}{c^{2} d^{2} x + a c d e}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^2/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm="fricas")

[Out]

[1/2*((c*d*x + a*e)*sqrt(1/(c*d))*e^(1/2)*log(8*c^2*d^3*x*e + c^2*d^4 + 8*a*c*d*x*e^3 + a^2*e^4 + 4*(2*c^2*d^2
*x*e + c^2*d^3 + a*c*d*e^2)*sqrt(c*d^2*x + a*x*e^2 + (c*d*x^2 + a*d)*e)*sqrt(1/(c*d))*e^(1/2) + 2*(4*c^2*d^2*x
^2 + 3*a*c*d^2)*e^2) - 4*sqrt(c*d^2*x + a*x*e^2 + (c*d*x^2 + a*d)*e))/(c^2*d^2*x + a*c*d*e), -((c*d*x + a*e)*s
qrt(-e/(c*d))*arctan(1/2*sqrt(c*d^2*x + a*x*e^2 + (c*d*x^2 + a*d)*e)*(2*c*d*x*e + c*d^2 + a*e^2)*sqrt(-e/(c*d)
)/(c*d^2*x*e + a*x*e^3 + (c*d*x^2 + a*d)*e^2)) + 2*sqrt(c*d^2*x + a*x*e^2 + (c*d*x^2 + a*d)*e))/(c^2*d^2*x + a
*c*d*e)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (d + e x\right )^{2}}{\left (\left (d + e x\right ) \left (a e + c d x\right )\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**2/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(3/2),x)

[Out]

Integral((d + e*x)**2/((d + e*x)*(a*e + c*d*x))**(3/2), x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^2/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Unable to divide, perhaps due to rounding error%%%{%%%{1,[1,1,4]%%%},[2,2]%%%}+%%%{%%%{-2,[2,3,2]%%%},[2,1]
%%%}+%%%{%%

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (d+e\,x\right )}^2}{{\left (c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x)^2/(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2),x)

[Out]

int((d + e*x)^2/(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2), x)

________________________________________________________________________________________